GENERALIZED SEMI COMMUTATIVE RINGS AND THEIR EXTENSIONS
نویسندگان
چکیده
منابع مشابه
Commutative Regular Rings without Prime Model Extensions
It is known that the theory K of commutative regular rings with identity has a model completion K . We show that there exists a countable model of K which has no prime extension to a model of K'. If K and K ate theories in a first order language L, then K is said to be a model completion of K if K extends K, every model of K can be embedded in a model of K , and for any model A of K and models ...
متن کاملSemi-simple Extensions of Rings
In this paper we investigate the conditions under which a given ring is a sub-ring of a semi-simple ring. For convenience, we say that a ring A is an extension of a ring B, if B is a sub-ring of A. It is found that the existence of a semi-simple extension is equivalent to the vanishing of the extension radical, a two-sided ideal defined analogously to the ordinary radical. In Theorem II we give...
متن کاملTransparent rings and their extensions
Skew polynomial rings have invited attention of mathematicians and various properties of these rings have been discussed. The nature of ideals (in particular prime ideals, minimal prime ideals, associated prime ideals), primary decomposition and Krull dimension have been investigated in certain cases. In this article, we introduce a notion of primary decomposition of a noncommutative ring. We s...
متن کاملNon-Commutative EQ-Logics and Their Extensions
We discuss a formal many-valued logic called EQlogic which is based on a recently introduced special class of algebras called EQ-algebras. The latter have three basic binary operations (meet, multiplication, fuzzy equality) and a top element and, in a certain sense, generalize residuated lattices. The goal of EQ-logics is to present a possible direction in the development of mathematical logics...
متن کاملPrime Lie Rings of Generalized Derivations of Commutative Rings
Let R be a commutative ring with identity. By a Bres̃ar generalized derivation of R we mean an additive map g : R→ R such that g (xy) = g (x) y + xd (y) for all x, y ∈ R, where d is a derivation of R. And an additive mapping f : R → R is called a generalized derivation in the sense of Nakajima if it satisfies f(xy) = f(x)y + xf(y) − xf(1)y for all x, y ∈ R. In this paper we extend some results o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Korean Mathematical Society
سال: 2008
ISSN: 1015-8634
DOI: 10.4134/bkms.2008.45.2.285